A Via Láctea

Walter Junqueira Maciel

8.i Introdução: A Via Láctea

8.1.1 Observações da Via Láctea
8.1.2 A estrutura da Via Láctea
8.1.3 A Via Láctea na história
8.2 Componentes da via láctea
8.2.1 Estrelas e campo de radiação
8.2.2 Nebulosas
8.2.3 GÁs interestelar
8.2.4 Poeira Interestelar
8.2.5 Raios cósmicos
8.2.6 Campo magnético

8.3 Distâncias

8.3.1 Paralaxe trigonométrica
8.3.2 Métodos estatísticos e cinemáticos
8.3.3 Distâncias espectroscópicas
8.3.4 A relação período-luminosidade
8.4 O meio interestelar
8.4.1 Introdução
8.4.2 A densidade do meio interestelar
8.4.3 O campo de radiação interestelar
8.4.4 Linhas espectrais interestelares
8.4.5 EQuilíbrio termodinâmico
8.4.6 Temperatura do meio interestelar
8.4.7 Nebulosas ionizadas interestelares
8.4.8 Abundâncias interestelares
8.4.9 Poeira interestelar
8.4.10 Moléculas interestelares
8.4.11 Equilíbrio no meio interestelar
8.5 Cinemática da galáxia
8.5.1 Equações da rotaçáo galáctica
8.5.2 Rotaçāo rígida e rotaçāo kepleriana
8.5.3 Fórmulas de Oort
8.5.4 A curva de rotação
8.6 Estrutura galáctica e braços espirais
8.6.1 Ondas de densidade
8.7 Populações estelares
8.7.1 O conceito de populações estelares
8.7.2 Populações estelares e as principais regióes da Galáxia
8.7.3 Abundâncias químicas
8.8 Formação de estrelas
8.8.1 Colapso e fragmentação
8.8.2 O critério de Jeans
8.9 Formação e evolução da gáláxia
8.9.1 Evolução galáctica e evolução química

1- A Via Láctea e as Nuvens de Magalhäes (Roger Smith, AURA/NOAO/NSF).

8.1 Introdução: A Via Láctea

8.1.1 Observações da Via Láctea

Em noites de céu aberto pode-se observar uma faixa esbranquiçada estendendo-se pelo céu e contrastando fortemente com as regiões vizinhas. É o plano da galáxia que abriga o Sistema Solar, a Via Láctea (figura 1). Observando-se cuidadosamente na direção sul, é possível distinguir também duas manchas claras, sem forma definida, as Nuvens de Magalhães, galáxias satélites da Via Láctea.

Galáxias como a Via Láctea são gigantescos sistemas abrigando centenas de bilhões de estrelas e outros objetos, como planetas, nuvens de gás e poeira.

Muitas outras galáxias podem ser observadas, embora quase todas necessitem de um pequeno telescópio, ou ao menos um binóculo, para que possam ser claramente definidas. Para diferenciar a Via Láctea de outras galáxias, é costume grafar "Galáxia", com um "G" maiúsculo. É possível observar milhões de galáxias no céu, com formas e tamanhos diferentes, sendo a Via Láctea apenas uma delas, e bastante comum. Isto é uma grande vantagem para o estudo da Via Láctea, pois sua forma, conteúdo, estrutura e evolução não devem ser muito diferentes das de outras galáxias. A principal dificuldade do estudo da Galáxia é que a Terra, como o Sistema Solar, é parte dela, o que torna difícil conhecer algumas de suas propriedades, por efeito de ausência de distanciamento crítico. Isso, teoricamente, ocorre também com o morador de uma cidade que teria dificuldade em definir o desenho das ruas, praças etc., sem sair do chão.

8.1.2 A estrutura da Via Láctea

Observações detalhadas da Via Láctea mostram que ela tem forma de um disco achatado, com um núcleo brilhante, ou bojo, e um halo aproximadamente esférico, como mostrado na figura 2. O disco contém muitas estrelas, gás e poeira, enquanto no halo a quantidade de estrelas observadas é muito menor. No núcleo a densidade de estrelas é elevada, o que o torna especialmente brilhante. Essas

2- A Via Láctea (COBE/DIRBE/NASA).

3- A galáxia NGC 891 (Howk/Savage/Sharp).

4- A galáxia NGC 628 (Gemini).
características são também comuns a muitas outras galáxias, que exibem núcleos, discos e halos estelares. A figura 3 mostra a galáxia NGC 891, muito semelhante à Via Láctea.

O Sistema Solar está imerso no disco da Galáxia, isto é, nossa visão das demais partes dela está limitada pela localização da Terra, dentro do disco. Mas, comparando observações mais detalhadas de alguns objetos galácticos com imagens de outras galáxias, pode-se ter uma ideia de como a Galáxia seria, se pudéssemos observá-la do exterior. O resultado é semelhante ao mostrado na figura 4, que retrata a galáxia NGC 628. Esse objeto, como a Via Láctea, tem uma estrutura espiral na região do disco, com braços espirais associados a muitas estrelas jovens e brilhantes. A Via Láctea é então uma galáxia espiral, de acordo com o sistema de classificação de galáxias de Hubble, em que essas estruturas podem ser espirais, com ou sem barras, elípticas e irregulares.

Os astrônomos pensam que a Galáxia tenha uma barra próxima ao bojo. Nesse caso, uma classificação mais precisa para ela seria de espiral barrada. E ela não está isolada no Universo. Muitas galáxias pertencem a grupos chamados aglomerados de galáxias e a Via Láctea integra o chamado Grupo Local, que reúne entre 40 a 50 objetos, entre os quais as duas Nuvens de Magalhães e a galáxia de Andrômeda, outra espiral muito parecida com a Via Láctea.

Uma característica interessante que se pode observar na Galáxia é uma faixa escura ao longo do disco. Essa estrutura está presente em outras galáxias, como é o caso de NGC 891, na figura 3. Durante muito tempo, os astrônomos acreditavam que essas regiôes escuras abrigavam um baixo
número de estrelas, verdadeiros "buracos" no céu. Apenas na década de 1930 ficou evidente que essas regiões exibem nuvens de poeira interestelar, que absorve a luz de estrelas situadas além, de modo que não é possível observá-las da Terra. A poeira é formada basicamente por pequenos grãos sólidos, mais ou menos como a areia das praias.

A ideia atual sobre estrutura da Galáxia envolve três regiões principais: o disco, o bojo e o halo. O disco pode ainda ser subdividido em duas partes, o disco fino, mais próximo ao plano galáctico, com espessura de centenas de parsecs - um parsec corresponde a aproximadamente a 3,26 anos-luz - eo disco espesso, que se estende a uma distância maior do plano, da ordem de mil parsecs.

O diâmetro total do disco é da ordem de 50 mil parsecs, e o halo esférico é provavelmente ainda maior. A Galáxia, assim como outras, parece conter parte considerável de matéria escura, isto é, matéria não luminosa, cuja natureza permanece desconhecida. O bojo da Galáxia é muito menor, com dimensões abaixo de três mil parsecs, aproximadamente.

8.1.3 A Via Láctea na história

O nome da Galáxia - Via Láctea - é utilizado em várias línguas modernas, e remonta à Antiguidade Clássica. Na mitologia grega, Zeus teve um filho, Héracles, com uma mortal, Alcmena, esposa de Anfitrião. Para que o menino tivesse poderes associados aos deuses, como a imortalidade, Zeus levou-o para ser amamentado por sua esposa Hera, que, zangada, afastou de si o menino, derramando seu leite pelo céu, o que originou a Via Láctea.

O homem sempre teve curiosidade em conhecer a origem e a estrutura da Via Láctea, e vários modelos sobre ela foram elaborados historicamente, como os de Thomas Wright (1750), William Herschel (1785) e Jacobus Cornelius Kapteyn (1922). Esses modelos tentavam reproduzir, a partir de contagens de estrelas, o aspecto achatado observado a olho nu, mas todos apresentaram dois defeitos fundamentais. No primeiro caso, as distâncias das estrelas não eram conhecidas e, no segundo, a absorção da luz das estrelas pela poeira interestelar não era levada em conta, o que afeta as conclusões sobre a distribuição estelar e a forma da Galáxia. Assim, o tamanho previsto da Galáxia foi sempre muito menor que o real, e o Sol esteve sempre colocado no centro, o que reproduziu um erro sistemático.

5- As Plêiades, um aglomerado galáctico (David Malin/AAO).

Essa dificuldade só foi resolvida no início do século 20, quando os modelos da Via Láctea foram comparados com a distribuição dos aglomerados globulares, conjuntos de estrelas reunindo centenas de milhares de objetos, com forma aproximadamente esférica. Os aglomerados têm distribuição homogênea em torno do centro da Galáxia, de modo que o centro de gravidade do sistema de aglomerados deveria coincidir aproximadamente com o centro da Galáxia. Como suas distâncias foram determinadas com precisão, ficou evidente que a Galáxia era muito maior que se pensava, e que o Sol não estava no centro do sistema, mas numa posição periférica.

8.2 Componentes da via láctea

De modo geral, os principais componentes da Via Láctea são: estrelas, nebulosas, gás interestelar, poeira interestelar, raios cósmicos, e o campo magnético galáctico.

8.2.1 Estrelas e campo de radiação

As estrelas são, provavelmente, o principal componente da Via Láctea, contendo a maior parte de sua massa visível. As estrelas podem ser de campo, ou de aglomerados. No segundo caso, os aglomerados podem ser do tipo globular, ou galácticos, quando o número de estrelas é menor e sua associação gravitacional menos intensa. As Plêiades, um conjunto de estrelas visíveis a olho nu na Constelação do Touro, são um bom exemplo de aglomerado galáctico (figura 5).

Associado às estrelas está um campo de radiação, composto por fótons que elas emitem, e existem fótons produzidos por outros processos físicos. Para investigar as propriedades dos componentes da Galáxia, em particular dos objetos do disco, é necessário conhecer detalhadamente esse campo. Sua determinação é complexa, envolvendo medidas em faixas muito diferentes do espectro eletromagnético: desde a radiação de baixa energia observada em ondas de rádio até os raios X e gama, de alta energia. A origem desses fótons pode estar tanto no interior como no exterior da Galáxia.

6- A Nebulosa de Orion (Mark McCaughrean/VLT/ANTU/ESO).

7- A nebulosa planetária NGC7293 (AAO).

8.2.2 Nebulosas

As nebulosas da Galáxia são essencialmente nuvens de gás e poeira, geralmente associadas a estrelas. Na constelação de Órion, por exemplo, próximo às Três Marias, é possível observar, a olho nu ou com ajuda de um pequeno binóculo, a Nebulosa de Órion (figura 6). À vista desarmada, ela parece uma pequena mancha branca, mas imagens mais profundas revelam uma estrutura extremamente complexa, contendo gás, poeira e estrelas jovens e brilhantes. Nebulosas como essa são chamadas difusas, ou regiões HII, isto é, regiões em que o hidrogênio está ionizado, ou seja, eletricamente carregado.

Um átomo de hidrogênio contém um próton e um elétron. As estrelas brilhantes associadas às nebulosas difusas são muito quentes e seus fótons podem arrancar o elétron do hidrogênio, que fica então ionizado. Essas nebulosas quase sempre exibem regiões escuras, associadas a poeira interestelar, além de regiões com forte presença de moléculas, como o monóxido de carbono, CO. Esses objetos são regiões de formação estelar, o que significa que as estrelas ali presentes são comparativamente muito jovens, com idades da ordem de milhões de anos. Para uma analogia, a idade do Sol é de aproximadamente 4,5 bilhões de anos, o que significa que o Sol é bem mais velho que as nebulosas difusas.

Outro tipo de nebulosa presente na Galáxia são as planetárias, como NGC 7293, mostrada na figura 7. Essas estruturas também estão associadas a estrelas muito quentes, mas suas dimensões são muito menores que nas regiões HII. Além disso, sua natureza é radicalmente diferente: enquanto as nebulosas difusas são sempre jovens, associadas a estrelas igualmente jovens e brilhantes, as planetárias são estruturas que resultaram da ejeção de estrelas envelhecidas, próximas ao estágio final de suas vidas. Em relação ao nome que recebem, é preciso dizer que, de fato, não têm qualquer relação com planetas. Apenas lembram a forma de planetas como Netuno, observadas com um telescópio de pequeno porte.

Além das nebulosas difusas e planetárias, existe um terceiro tipo de nebulosas ionizadas: restos, ou remanescentes de supernovas, como a Nebulosa do Caranguejo, mostrada na figura 8. Como o nome delas sugere, essas nebulosas são o que sobrou de estrelas de grande massa, acima de oito vezes a massa do Sol, que explodiram como supernovas. Neste aspecto, elas se diferenciam das planetárias, que são ejetadas por estrelas de massa pequena, abaixo de oito massas solares. Em alguns bilhões de

8－A Nebulosa do Caran－ guejo，um resto de supernova （FORS／VLT／ESO）．
anos o Sol terminará a etapa de estabilidade em que se encontra，e ejetará suas camadas mais exter－ nas，que tomarão a forma de uma nebulosa planetária．

Quando o gás e a poeira estão associados com estrelas quentes no interior de uma nebulosa，mas não o suficiente para ionizar o hidrogênio，forma－se uma nebulosa de reflexão．As Plêiades，vistas na figura 5，mais uma vez são exemplo disso．Elas receberam esse nome porque os grãos presentes na nebulosa refletem a luz das estrelas próximas，o que é confirmado pela comparação entre os espectros da nebulosa e da estrela．

8．2．3 Gás interestelar

O gás interestelar ocupa todo o espaço do disco da Galáxia e de outras galáxias espirais e isso também é comum em galáxias irregulares，com a diferença que，no segundo caso，sua deteç̧ão é mais difícil．Ele pode ser identificado pela absorção que provoca na luz de estrelas situadas em sua direção，ou pela emissão de radiação em alguns comprimentos de onda bem definidos．De acordo com as leis de Kirchhoff（Gustav Kirchhoff，1824－1887，físico alemão），nuvens frias si－ tuadas à frente de estrelas quentes produzem uma absorção，que pode ser detectada．Da mesma forma，se não houver qualquer estrela na direção da nuvem，ela poderá ser vista por sua emissão， em condições favoráveis．Mas ambas as situações podem ocorrer，de modo que o gás pode ser detectado e sua natureza pode ser esclarecida．Basicamente esse gás é composto de hidrogênio e hélio，com pequena，mas importante，contribuição de elementos mais pesados，como carbono， nitrogênio，oxigênio e outros．

As primeiras deteç̧ões de linhas espectrais interestelares ocorreram no início do século 20，mas devido às limitações instrumentais，apenas alguns elementos pouco abundantes puderam ser iden－ tificados．Os elementos mais importantes，em particular o hidrogênio atômico，ou HI，só foram medidos de maneira precisa na segunda metade do século，com técnicas de observação nas faixas do infravermelho，milimétrica e rádio，do espectro eletromagnético．Alguns resultados recentes da emissão do hidrogênio ao longo do plano galáctico estão mostrados na figura 9．Eles são obtidos a partir da chamada linha de 21 cm do hidrogênio，um comprimento de onda de rádio．

9- Emissão de H no plano galáctico (J. Dickey/UMn/F. Lockman/NRAO).

8.2.4 Poeira Interestelar

A poeira interestelar ocorre em nuvens escuras, e é formada por grãos sólidos, com dimensões típicas de poucas dezenas de angstroms, até microns, ou milésimos de milímetros. O efeito mais óbvio dos grãos é a extinção interestelar, isto é, a absorção da radiação das estrelas situadas na direção da nuvem de poeira, mas localizadas além dela. A extinção tem um efeito importante na medida do brilho intrínseco das estrelas e nas contagens estelares que permitem descrever a estrutura da Galáxia. Em contrapartida, possibilitam entender a natureza dos grãos, suas dimensões, composição química e propriedades ópticas. Além da extinção, o estudo dos grãos pode ser feito a partir de medidas da polarização interestelar e emissão de energia.

8.2.5 Raios cósmicos

Raios cósmicos são partículas de alta energia que atravessam o espaço interestelar, eventualmente aproximando-se da atmosfera da Terra. São compostos por prótons, elétrons, núcleos de hélio e outros elementos, gerados em eventos energéticos na Galáxia ou em regiões extragalácticas, incluindo as explosões solares, supernovas, núcleos ativos de galáxias etc. Independente de sua origem, ao atravessar o disco da Galáxia, eles podem interagir com os átomos do gás nesta região, o que afeta suas propriedades físicas. O processo físico conhecido como espalação, por exemplo, resulta da interação dos raios cósmicos de baixa massa com átomos pesados do meio interestelar, produzindo os elementos $\mathrm{Li}, \mathrm{Be} \mathrm{e}$ B. O processo inverso também pode ocorrer quando raios cósmicos de massa mais elevada interagem com átomos leves do meio interestelar, caso do H , produzindo os mesmos elementos. Esse processo é importante para o estudo da nucleossíntese desses elementos leves, facilmente destruídos durante a evolução estelar, de modo que sua principal fonte de produção é justamente o processo da espalação.

8.2.6 Campo magnético

A Galáxia também exibe um campo magnético de baixa intensidade, da ordem de alguns microgauss, associado principalmente ao disco e aos braços espirais. A origem desse campo ainda é debatida, assim

10- O campo magnético de M51 (R. Beck).

11- Paralaxe trigonométrica.
como sua influência na formação e equilíbrio das nuvens interestelares. A distribuição do campo na Galáxia pode ser analisada pelo estudo da polarização de grãos interestelares, além de outros métodos como o Efeito Zeeman, que permitem determinar sua intensidade. Atualmente, existem pesquisas detalhadas em galáxias externas, capazes de mapear os campos magnéticos nesses objetos, como pode ser visto na figura 10 para a galáxia M 51 . Esses resultados potencialmente podem ser aplicados à Galáxia.

8.3 Distâncias

Um dos problemas básicos no estudo da Galáxia é a determinação de distâncias. De fato, existe basicamente um único método direto para resolver esse problema: a paralaxe trigonométrica que se aplica atualmente a um número restrito de objetos relativamente próximos. Para os demais, métodos indiretos devem ser utilizados, quase sempre acompanhados de grandes incertezas.

8.3.1 Paralaxe trigonométrica

Este método consiste essencialmente em observar uma estrela com um intervalo de tempo de seis meses, de modo que a Terra tenha se deslocado por uma distância de duas unidades astronômicas, sendo a unidade astronômica definida pela distância média entre a Terra e o Sol, equivalente a 150 milhões de quilômetros.

Como indicado na figura 11, a distância da estrela é dada pela relação $d=1 / p$, sendo a distância medida em parsecs (pc) e a paralaxe pem segundos de arco. Essa relação pode ser considerada como a definição do parsec, a unidade de distância mais utilizada na astrofísica da Galáxia, além de seus múltiplos, o kiloparsec (kpc), sendo $\mathrm{kpc}=1.000 \mathrm{pc}$, e o megaparsec $(\mathrm{Mpc}), \mathrm{Mpc}=1.000 \mathrm{kpc}$. Considerando outra unidade usual de distância, o ano-luz, a distância que luz viaja no vácuo em um ano, temos $1 \mathrm{pc}=3,26$ anos-luz.

Atualmente, as medidas mais precisas de paralaxes trigonométricas são as do satélite Hipparcos, lançado em 1989, que consegue medir paralaxes acima de 0,001 segundo de arco, ou seja, pode ser aplicado a estrelas com distâncias abaixo de 1.000 pc , o que o torna aplicável a cerca de 120 mil
estrelas. Está em desenvolvimento o projeto GAIA, a ser lançado provavelmente em fins de 2011, que deverá ser capaz de alcançar paralaxes cem vezes menores, até 0,00001 segundo de arco, o que corresponde a distâncias de 100 kpc , da ordem de grandeza das dimensões da própria Galáxia.
8.3.2 Métodos estatísticos e cinemáticos

Alguns métodos de determinação de distâncias baseiam-se em propriedades cinemáticas, isto é, em seus movimentos observados na linha de visada e no plano do céu. De modo geral, pode-se dividir a velocidade de uma estrela em duas componentes: a radial, medida na linha de visada, e a tangencial, na direção perpendicular à linha de visada. A primeira pode ser medida com enorme precisão por meio do efeito Doppler, mas a velocidade tangencial tem geralmente uma aplicação mais limitada, devido à dificuldade em determinar movimentos ao longo do plano do céu.

Medidas de velocidades são sempre relativas, isto é, feitas em relação a um determinado sistema de referência. Procedimentos com telescópios no solo produzem velocidades relativas à Terra, ou geocêntricas. Uma vez que os movimentos da Terra em relação ao Sol são bem conhecidos, é possível, com relativa facilidade, reduzir essas velocidades a parâmetros heliocêntricos, ou seja, relativas ao Sol. O Sol e os objetos da vizinhança solar têm movimento de rotação em torno do centro da Galáxia. Uma média desses movimentos permite definir um sistema de referência mais geral, chamado $\mathrm{Pa}-$ drão Local de Repouso, ou LSR. Assim, é possível converter as velocidades observadas, inclusive a velocidade do Sol, a esse sistema, mais conveniente para investigar os movimentos na Galáxia.

Podemos definir alguns métodos de determinação de distâncias a partir de medidas de velocidades de grupos de estrelas, como, por exemplo, as paralaxes estatísticas, as paralaxes seculares e o método dos aglomerados móveis. Esses métodos baseiam-se em medidas das velocidades de grupos de estrelas, e não de estrelas individuais, permitindo assim a determinação de distâncias médias, ao contrário das paralaxes trigonométricas, que fornecem determinações individuais, mais precisas.

8.3.3 Distâncias espectroscópicas

É possível, ainda, desenvolver uma série de procedimentos para a determinação de distâncias, to-

12- Exemplo do diagrama HR calibrado.
dos eles relacionados às características espectrais observadas das estrelas. O sistema de classificação espectral, baseado no sistema originalmente desenvolvido em Harvard, permite associar um tipo espectral a cada estrela, variando dos tipos iniciais O, B, até os tipos finais K, M. Esses tipos estão ligados à sequência de temperaturas efetivas ou aos índices de cor das estrelas, como os índices $\mathrm{B}-\mathrm{V}$ e U-B. Portanto, obtido o espectro de uma estrela, pode-se em princípio determinar sua temperatura efetiva, ligada à luminosidade estelar, ao raio e ao fluxo emitido pela estrela. Além do tipo espectral é necessário conhecer a classe de luminosidade da estrela, isto é, determinar se ela pertence à sequência principal, se é uma gigante, supergigante etc., o que pode ser feito, por exemplo, a partir de sua gravidade, obtida também de seu espectro.

Como um exemplo ilustrativo, a partir do espectro observado pode-se obter a temperatura efetiva, ou o tipo espectral, ou o índice de cor. Uma vez que esteja disponível um diagrama HR calibrado, como o mostrado na figura 12, a magnitude absoluta da estrela M pode ser conhecida. A magnitude aparente " m " é então medida, e a distância determinada a partir da definição do módulo de distância

$$
\begin{equation*}
m_{v}-M_{v}=5 \log d-5 \tag{1}
\end{equation*}
$$

Um complicador desse método é a absorção interestelar, pois estrelas mais distantes ou em regiões fortemente obscurecidas são afetadas pela extinção. Nesse caso, é preciso incluir um termo adicional, no segundo membro da equação, que mede a extinção em magnitudes, e que deve ser determinado de forma independente.

8.3.4 A relaçâo período-LUMinosidade

Um método eficiente para estabelecer distâncias galácticas e extragalácticas está baseado na relação entre o período e a luminosidade de algumas estrelas variáveis, em particular as Cefeidas. Essas estrelas apresentam variações regulares de brilho, causadas por uma variação em seus raios, chamada pulsação. A partir do trabalho desenvolvido no início do século 20 por Henrietta Leavitt, sabe-se que os períodos das curvas de luz aumentam para as estrelas mais brilhantes, o que evidencia a relação
período-luminosidade. Portanto, a aplicação desse método é, em princípio, simples: basta medir o período de variação luminosa da estrela, que geralmente pode ser feito com precisão, para obter a luminosidade, ou magnitude absoluta, usando a relação período-luminosidade. A distância pode então ser determinada a partir da equação (1) acima, como no caso anterior.

8.4 O meio interestelar

8.4.1 Introdução

O meio interestelar é uma das principais componentes da Galáxia. Tem papel fundamental na formação das estrelas, o que ocorre em nuvens interestelares, e na evolução química da Galáxia, pois o material reciclado nas estrelas pelas reações termonucleares é devolvido ao meio interestelar, onde é usado na formação de novas estrelas. Do ponto de vista da astrofísica da Galáxia, o meio interestelar é basicamente a região situada entre as estrelas, concentrado no disco galáctico, e disperso em nuvens interestelares. As dimensões totais do espaço interestelar são, portanto, da ordem das dimensões do disco, grosseiramente algo como 25 kpc de raio e cerca de algumas centenas de parsecs de altura. Nessa região estão concentradas as estrelas jovens e quentes, formadas a partir desse meio, e também, boa parte das estrelas mais velhas, que devolvem material processado ao meio interestelar.

A composição do meio interestelar é extremamente variada, mas pode ser simplificada considerando que contém essencialmente gás e poeira. Entretanto, muitos objetos podem ser incluídos a partir dessa definição, como as nebulosas escuras, nebulosas de reflexão, nebulosas difusas (regiões HII), nebulosas planetárias, restos de supernovas, nuvens moleculares, nuvens de H neutro e meio internuvens, além da presença de um campo magnético, do gás coronal e dos raios cósmicos.
8.4.2 A densidade do meio interestelar

Uma maneira prática de caracterizar o meio interestelar pode ser a partir de suas densidades, provavelmente a característica mais marcante dessas regiôes. A tabela 1 mostra alguns objetos astronômicos

Região	$\mathrm{n}\left(\mathrm{cm}^{-3}\right)$
Interior solar	7×10^{26}
Água	3×10^{22}
Ar	2×10^{19}
Fotosfera solar	1×10^{17}
Atmosfera (M5 III)	2×10^{15}
Envelope circunstelar (M)	1×10^{8}
Região IS densa	1×10^{4}
Região IS difusa	10
Meio internuvem	0,1
Gás coronal/MIG	10^{-4}

Tabela 1-Densidades em objetos astronômicos
e as suas densidades volumétricas típicas, em unidades de partículas cm^{-3}. As regiões interestelares podem ser grosseiramente divididas em regiões interestelares densas e difusas e, em ambos os casos, as densidades são muito mais baixas em comparação com outros objetos astronômicos, como pode ser visto na tabela. Essas regiões estão imersas em um meio internuvens, ainda mais diluído, possível de ser comparado qualitativamente ao ar que respiramos, espalhado entre as nuvens no céu. As baixas densidades do meio interestelar podem suscitar dúvidas com relação a sua importância, pois esse ambiente é geralmente menos denso que o melhor dos vácuos produzidos em laboratório. Ocorre que o meio interestelar está espalhado por distâncias muito grandes, de modo que o número de partículas observadas em uma coluna com um centímetro quadrado de área é elevado. Esse número é a chamada densidade de coluna, e pode alcançar valores da ordem de 10^{22} partículas cm^{-2}.

8.4.3 O Campo de radiação interestelar

As estrelas quentes e jovens situadas no disco da Galáxia exibem um campo de radiação capaz de ser investigado a partir da análise da radiação emitida por elas. O campo de radiação interestelar total é muito mais complexo como se constatou recentemente com o desenvolvimento de detectores em outras faixas espectrais além da radiação visível. O espectro observado tem diversas componentes, como a radiação integrada em rádio, produzida por fontes galácticas e extragalácticas; a radiação de fundo cósmica, eco do Big Bang; a emissão infravermelha devida à poeira interestelar; a radiação estelar integrada, em comprimentos de onda na faixa ultravioleta; e a radiação de alta energia em raios X e gama, também emitida por fontes galácticas e extragalácticas.

A componente estelar no ultravioleta tem importância especial para a física do meio interestelar, em particular pela presença de um corte abaixo de $912 \AA$, que corresponde aos fótons capazes de ionizar o hidrogênio. Para comprimentos de onda abaixo de $912 \AA$, os fótons são absorvidos nas vizinhanças das fontes, dada a grande abundância do H , principal componente das nuvens interestelares. De fato, uma boa maneira de classificar essas nuvens pode ser a partir do estado de ionização do H : quase sempre, nas nuvens difusas o hidrogênio está na forma atômica (H); nas nuvens densas, ou nuvens moleculares, tem a forma molecular $\left(\mathrm{H}_{2}\right)$, e nas nuvens mais quentes, com temperaturas da ordem de 10 mil graus kelvin, o hidrogênio está ionizado (H^{+}ou HII), como ocorre nas regiôes HII e nebulosas planetárias.

Muitas informações importantes podem ser obtidas a partir da análise de linhas de emissão e absorção interestelares. As linhas espectrais são o resultado dos processos de emissão e absorção da radiação pelos átomos e íons de diferentes elementos, correspondentes a transições entre dois níveis de energia. A frequência da linha pode ser determinada a partir da diferença das energias dos níveis, isto é, $E=b \boldsymbol{v}=h c / \lambda$, onde b é a constante de Planck, c é a velocidade da luz no vácuo, n é a frequência da linha e l o comprimento de onda. Na prática, os níveis de energia não são infinitamente finos, havendo um alargamento da linha, que dá a ela a aparência observada. Como processos de alargamento, pode-se citar o alargamento natural, consequência direta do princípio da incerteza, o alargamento Doppler, o alargamento por pressão etc. Em cada um desses casos, é possível definir um perfil para a linha, uma função que caracteriza a variação da absorção (ou emissão) dentro da linha.

Entre as linhas interestelares, a linha de 21 cm do hidrogênio é especialmente importante para o estudo da Galáxia. Essa linha é produzida por uma transição entre dois níveis de estrutura fina do estado fundamental do hidrogênio. A diferença de energia entre os níveis é muito pequena, e a transição ocorre em comprimentos de onda de rádio, correspondendo a $\boldsymbol{v}=1420 \mathrm{MHz}$ ou $\lambda=$ $21,1 \mathrm{~cm}$. A probabilidade de essa linha ser produzida é muito pequena. Ela só é observada no meio interestelar porque a densidade de átomos de hidrogênio é extremamente alta. Analisando a emissão do H em diferentes posições na Galáxia é possível obter a densidade dos átomos que a produzem, isto é, pode-se estimar a densidade das nuvens interestelares. Essas medidas são particularmente importantes para o mapeamento do hidrogênio nos braços espirais da Galáxia.

Outra linha intensa que permite determinar as densidades no meio interestelar é a linha Ly-man- α, correspondente à transição entre os dois primeiros níveis de energia desse átomo. Neste caso, $\lambda=1215,67 \AA$ e a linha pode ser observada na faixa ultravioleta do espectro eletromagnético. Os resultados indicam valores da mesma ordem daqueles já mencionados, com densidades volumétricas tipicamente de 0,1 a 10 partículas cm^{-3}. Muitas outras linhas interestelares podem ser observadas, de vários elementos químicos, em particular na região do ultravioleta.

Uma das principais características do meio interestelar é a ausência de equilíbrio termodinâmico (ET). Os principais processos físicos não podem geralmente ser simplificados pelo uso das equações de Boltzmann e Saha, da função de distribuição de Maxwell e da função de Planck, válidas para o ET. Essas equações são muito simples, e dependem de um único parâmetro: a temperatura. Portanto, no meio interestelar todos os processos físicos importantes de excitação e ionização devem ser considerados, sejam eles processos radiativos, em que a transição ocorre pela absorção ou emissão de um fóton, ou colisionais, quando a transição está associada a uma colisão entre o átomo considerado e outra partícula, geralmente um elétron. Esse fato faz com que a física das regiões interestelares seja consideravelmente mais complexa que nas regiões onde prevalece o equilíbrio termodinâmico.
8.4.6 Temperatura do meio interestelar

A temperatura das nuvens interestelares pode ser obtida pela análise de linhas espectrais ou, teoricamente, pela consideração dos processos de aquecimento e resfriamento que ocorrem no meio interestelar. Entre os primeiros temos a fotoionização de átomos neutros, o aquecimento pelos raios cósmicos e por fotoelétrons emitidos por grãos; entre os processos de resfriamento, pode-se citar a excitação colisional por elétrons ou outras partículas, como átomos ou moléculas de hidrogênio. Uma vez identificado cada processo, é preciso calcular as taxas de aquecimento e resfriamento. Se o sistema estiver em estado estacionário, após certo tempo, que pode ser determinado, a temperatura ficará estabelecida em certo valor de equilíbrio determinável a partir da condição de que as taxas sejam iguais. Valores tipicamente da ordem de 100 K são obtidos para as nuvens interestelares neutras, e da ordem de 10.000 K para as regiões ionizadas. O meio internuvens, mais quente e rarefeito, pode ter temperaturas ainda mais altas.

[^0]As nebulosas ionizadas interestelares incluem as nebulosas fotoionizadas - regiões HII e nebulosas

	Regiões H II	Nebulosas planetárias
Tipo espectral	O, B	O, W
Temperatura efetiva	$30.000-50.000 \mathrm{~K}$	$30.000-300.000 \mathrm{~K}$
População	I jovem	I velha - II
Temperatura eletrônica	$10^{4} \mathrm{~K}$	$10^{4} \mathrm{~K}$
Densidade eletrônica	$10-10^{2} \mathrm{~cm}^{-3}$	$10^{2}-10^{4} \mathrm{~cm}^{-3}$
Massa total	$10^{2}-10^{4} \mathrm{M}_{\odot}$	$0,01-1 \mathrm{M}_{\odot}$
Dimensão típica	10 pc	$\lesssim 0,5 \mathrm{pc}$
Estado do H	H^{+}	H^{+}
Estado do He	He^{+}	$\mathrm{He}^{+}, \mathrm{He}^{++}$
Elementos pesados	ionizados	ionizados
Velocidade típica	$10 \mathrm{~km} / \mathrm{s}$ (térmica)	$25 \mathrm{~km} / \mathrm{s}$ (expansão)

Tabela 2-Propriedades das nebulosas fotoionizadas.
planetárias - e as nebulosas ionizadas colisionalmente, os restos de supernovas. Já mencionamos alguns exemplos desses objetos. As principais propriedades das nebulosas fotoionizadas estão relacionadas na tabela 2.

Uma característica interessante das nebulosas fotoionizadas é que a interface entre a região ionizada e o meio interestelar geral é muito estreita, menor que o tamanho típico dessas regiões. Isto se deve ao fato de que a distância percorrida por um fóton ionizante é pequena, isto é, a densidade de átomos de H é alta o suficiente para que o fóton seja absorvido rapidamente. Dessa forma, a região ionizada é relativamente bem definida, com as dimensões indicadas na tabela 2. No caso simples de uma única estrela e uma nuvem homogênea, a região ionizada é esférica, caracterizada por seu raio, o raio de Strömgren, assim chamado em homenagem à análise pioneira feita em 1939, pelo astrônomo sueco Bengt Strömgren (1908-1987). Uma consequência disso é que o grau de ionização da nebulosa, ou seja, a fração de átomos ionizados, é essencialmente igual a um em toda a nebulosa, caindo rapidamente a zero nas bordas da região, onde está a interface com o meio interestelar neutro.

8.4.8 Abundâncias interestelares

Determinadas as condições físicas das nebulosas fotoionizadas, essencialmente sua temperatura eletrônica e densidade eletrônica, pode-se obter sua composição química com precisão relativamente alta, pois essas nebulosas apresentam linhas de emissão brilhantes de muitos elementos como H, He, $\mathrm{C}, \mathrm{N}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{S}$ etc. Esses resultados são muito interessantes para o estudo da evolução química da Galáxia, já que, em geral, é difícil obter abundâncias precisas desses elementos nas estrelas. Assim, os resultados das nebulosas fotoionizadas e das estrelas podem ser combinados, produzindo vínculos mais significativos para os modelos de evolução galáctica.

8.4.9 Poeira interestelar

A poeira interestelar tem pelo menos três efeitos importantes e observáveis: a extinção interestelar, a polarização interestelar e a emissão de energia na faixa infravermelha do espectro. A extinção interes-

13- A curva de extinção interestelar.
telar introduz uma modificação na relação entre as magnitudes aparente e absoluta de uma estrela, e essa equação deve ser escrita na forma

$$
\begin{equation*}
m_{v}-M_{v}=5 \log d-5+A_{v} \tag{2}
\end{equation*}
$$

onde A é a absorção em magnitudes. Assim, se a extinção for alta, da ordem de alguns décimos de magnitude, o cálculo das distâncias será bastante afetado. Sem considerar a extinção interestelar, as distâncias das estrelas parecem maiores que são na realidade. Além disso, a extinção afeta mais os comprimentos de onda mais curtos, de modo que as estrelas parecem mais avermelhadas que são.

A principal informação sobre a extinção interestelar está contida na curva de extinção, como se vê na figura 13. Por essa curva observa-se que a extinção é muito baixa em grandes comprimentos de onda - infravermelho e rádio - e alta em comprimentos curtos, especialmente no ultravioleta. Isso dá uma ideia preliminar do tamanho dos grãos responsáveis pela extinção, da ordem de centenas a milhares de angstroms. Comparando a curva de extinção com os resultados previstos para diferentes composições químicas, pode-se ter uma ideia da composição química dos grãos. Os principais candidatos são grãos de grafite, silicatos, SiC , gelos sujos (com impurezas) e, também, partículas chamadas PAH, ou hidrocarbonetos aromáticos policíclicos.

Grãos não isotrópicos, como estruturas alongadas ou com impurezas, podem polarizar a luz, se devidamente alinhados. Os grãos interestelares geralmente têm alguma carga elétrica, sofrendo a ação de campos magnéticos como o campo interestelar. Como resultado disso, a luz refletida pelos grãos pode estar parcialmente polarizada, e o estudo desse efeito dá informações sobre a natureza das partículas.

Além disso, os grãos emitem radiação, em especial na faixa infravermelha do espectro eletromagnético. Sua emissão é essencialmente de corpo negro, de modo que observando essa radiação, podese estimar suas temperaturas. Os valores obtidos são baixos, menores que 100 K .

A análise da formação e evolução dos grãos ainda está em estágio rudimentar, mas acredita-se que eles sejam formados principalmente nas atmosferas e envoltórias de estrelas frias, e, posteriormente, ejetados para as nuvens interestelares.

Região	$\mathrm{n}\left(\mathrm{cm}^{-3}\right)$	$\mathrm{T}(\mathrm{K})$	$\mathrm{P}\left(\mathrm{din} \mathrm{a} / \mathrm{cm}^{2}\right)$
nuvens difusas	10	100	10^{-13}
nuvens molecurares densas	10^{4}	<100	10^{-11}
meio internuvens	10^{-1}	10^{4}	10^{-13}
regiões de H ionizado	10^{2}	10^{4}	10^{-10}
gás coronal	10^{-2}	10^{5}	10^{-13}

Tabela 3- Equilibrio no meio interestelar.

8.4.10 Moléculas interestelares

Mais de uma centena de moléculas são conhecidas no meio interestelar, em especial nas nuvens densas, ou nuvens moleculares, sítios de formação estelar. Elas variam de simples moléculas e radicais diatômicos até longas cadeias contendo mais de dez átomos. Parte considerável dessas moléculas inclui átomos de C e H , os mesmos que formam as principais moléculas orgânicas associadas à vida.

As moléculas mais importantes no meio interestelar são o H_{2} e o CO , que estão entre as mais abundantes. O hidrogênio molecular, apesar de muito abundante, é de difícil detecção, de modo que quase sempre se utiliza o CO para investigar regiões moleculares densas. O CO pode ser observado em rádio, e tem uma linha muito intensa em $4,6 \mathrm{~mm}$. As nuvens moleculares são importantes no processo de formação de estrelas, uma vez que elas se formam pela condensação de material interestelar, localizado nas suas regiôes mais densas, justamente as nuvens moleculares.

8.4.11 Equilíbrio no meio interestelar

As diversas fases que formam o meio interestelar apresentam certo equilíbrio, no sentido de as densidades de energia armazenadas em cada fase serem semelhantes. Isso pode ser conferido na tabela 3, que mostra a densidade volumétrica média, temperatura cinética média e a pressão do gás para algumas das principais fases interestelares. Esses resultados sugerem que as fases mais densas estão em equilíbrio de pressão segundo pressões mais altas, enquanto as fases mais difusas teriam um equilíbrio a pressões mais baixa e semelhantes. Esses resultados são aproximados, mas sugerem que o meio interestelar galáctico alcançou um estado de equilíbrio global. Isso não exclui a possibilidade de processos dinâmicos no meio interestelar, como a expansão de regiões HII e nebulosas planetárias, ventos estelares, expansão de supernovas, as colisões de nuvens interestelares, entre outros.

14- Órbitas das estrelas na Galáxia (C. Chiappini).

8.5 Cinemática da galáxia

Os objetos do disco galáctico, em especial os do disco fino, com escala de altura da ordem de algumas centenas de parsecs, têm um movimento global de rotação em torno do centro da Galáxia, enquanto que os objetos do disco espesso e do halo mostram órbitas mais inclinadas em relação ao plano, como mostrado na figura 14.

A rotação galáctica foi descoberta em 1923 pelo astrônomo sueco Carl Charlier (1862-1934), e as principais análises pioneiras desenvolvidas pelo astrônomo holandês Jan H. Oort (1900-1992) e o sueco Bertil Lindblad (1895-1965), na década de 1920. A rotação galáctica é expressa pela curva de rotação, que é essencialmente um gráfico da velocidade linear de rotação em função da distância ao centro galáctico projetada sobre o plano. Dois métodos podem ser geralmente usados para obter a curva de rotação: 1) observações ópticas dos movimentos das estrelas e regiões HII, limitadas a alguns kpc do Sol pela absorção interestelar, e 2) observações em rádio e milimétricas, da linha de 21 cm do H ou das linhas do CO , que fornecem a curva de rotação nas regiões internas da Galáxia.
8.5.1 EQUAÇÕES DA ROTAÇÃO GALÁCTICA

É possível medir as velocidades das estrelas na direção da linha de visada, obtendo então sua velocidade radial v_{r}, e a velocidade perpendicular à linha de visada, portanto a velocidade no plano do céu, ou velocidade tangencial, representada por v_{t}. Considerando que as estrelas têm órbitas circulares, as velocidades radial e tangencial de uma estrela podem ser escritas

$$
\begin{align*}
& v_{r}=R_{0}\left(\omega-\omega_{0}\right) \sin \ell \tag{3}\\
& v_{t}=R_{0}\left(\omega-\omega_{0}\right) \cos \ell-\omega d \tag{4}
\end{align*}
$$

onde R_{0} é a distância galactocêntrica do Sol, ω é a velocidade angular da estrela considerada, ω_{0} é a velocidade angular na posição do Sol, l é a longitude galáctica da estrela e d sua distância. Valores atuais de R_{0} e ω_{0} são $R_{0}=8 \mathrm{kpc}$ e $\Theta_{0}=25 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$. As equações (3) e (4) são muito úteis, parti-

15- Variação da velocidade radial em órbitas keplerianas
cularmente a equação (3), pois medindo a velocidade radial de uma estrela com longitude conhecida, pode-se obter a velocidade angular de rotação na posição da estrela. Se a velocidade tangencial também for conhecida, é possível usar a relação (4) para estimar a distância da estrela. Essas equações podem ser ainda simplificadas no caso de objetos próximos ao Sol, mas na forma acima são bastante gerais, admitindo apenas que as órbitas das estrelas em relação ao centro galáctico são circulares. A velocidade angular ω está relacionada à velocidade linear de rotação Θ pela expressão

$$
\begin{equation*}
\Theta=\omega R \tag{5}
\end{equation*}
$$

Na posição do Sol temos $\Theta_{0}=\omega_{0} R_{0}=200 \mathrm{~km} / \mathrm{s}$. Conhecendo a velocidade angular, pode-se obter a velocidade linear, se a distância galactocêntrica for conhecida. Assim, é possível construir a curva de rotação da Galáxia.

8.5.2 Rotação rígida e rotação kepleriana

Dois casos simples podem ser considerados para a rotação galáctica, a rotação rígida e a rotação kepleriana. No caso da rotação rígida, todos os objetos deslocam-se à mesma velocidade angular, e a velocidade de rotação aumenta linearmente com a distância galactocêntrica. É o caso da rotação de um disco compacto ou DVD. Esse caso aplica-se de maneira aproximada às regiões mais internas da Galáxia. No caso de órbitas keplerianas, considerando M a massa total da Galáxia, e m a massa contida no raio R, temos que

$$
\begin{equation*}
\frac{G M m}{R^{2}}=\frac{m \Theta^{2}}{R} \tag{6}
\end{equation*}
$$

Portanto, a velocidade de rotação em função da posição é dada por

$$
\begin{equation*}
\Theta=\left(\frac{G M}{R}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

ou seja, a velocidade cai com a raiz quadrada da distância galactocêntrica. Da equação (7) temos diretamente uma forma funcional para a curva de rotação. Essa relação não é verificada na Galáxia,

16- A curva de rotação galáctica (J. Lépine).

17- Curvas de rotação de galáxias espirais (M. Zeilik).
isto é, a rotação do disco galáctico não é kepleriana. Apesar disso, é possível obter algumas relações aproximadamente corretas, principalmente pelo fato de que a velocidade angular na rotação kepleriana diminui quando a distância galactocêntrica aumenta, o que é verificado na Galáxia.

O comportamento da velocidade radial com a distância da estrela pode ser resumido como indicado esquematicamente na figura 15. Para os quadrantes internos, com longitudes entre 0 e 90 graus, a velocidade radial atinge um máximo para certa distância $R m$, decrescendo em seguida. Situação inversa ocorre para longitudes entre 270 e 360 graus. Essa velocidade radial máxima corresponde a uma distância galactocêntrica mínima $R m$. coerente com o fato de que a velocidade angular decresce quando R aumenta.

8.5.3 Fórmulas de Oort

No caso de objetos relativamente próximos ao Sol, as equações (3) e (4) assumem uma forma mais simples. Em 1927, J. H. Oort mostrou que as velocidades radial e tangencial podem ser escritas

$$
\begin{align*}
& v_{r} \simeq A d \sin 2 \ell \tag{8}\\
& v_{t} \simeq d(A \cos 2 \ell+B) \tag{9}
\end{align*}
$$

Essas são as fórmulas de Oort, e A e B são as constantes de Oort, dois parâmetros básicos da rotação galáctica determinados a partir de medidas das velocidades de objetos da vizinhança solar, como estrelas variáveis cefeidas, RR Lyrae, nebulosas etc. Os resultados indicam os valores médios $\mathrm{A}=16 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$ e $\mathrm{B}=-11 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$. Com esses valores é possível estimar alguns grandezas importantes para a rotação galáctica, como o tempo médio de rotação do Sol em torno do centro galáctico de cerca de 230 milhões de anos. É possível ainda usar essas equações para obter as distâncias de objetos relativamente próximos, bastando para isso medir sua velocidade radial e longitude galáctica.

18- Estrutura dos braços espirais da Galáxia (D. Russeil).

8.5.4 A curva de rotação

A partir de medidas da velocidade radial é possível obter a curva de rotação, usando a equação (3), uma vez que a distância seja conhecida. Isso pode ser feito a partir de técnicas radioastronômicas para os quadrantes internos ao círculo solar, e observações ópticas nos demais casos. A curva pode ser definida para distâncias galactocêntricas até cerca de 16 a 18 kpc do centro, como mostrado na figura 16.

Essa curva é consistente com rotação rígida nas regiões internas da Galáxia, onde a velocidade aumenta com R, mas na região mais externa não diminui como previsto pelas órbitas keplerianas. O fato de a curva de rotação ser aproximadamente constante além do círculo solar pode ser explicado pela existência de matéria não luminosa, ou matéria escura, nessa região. De fato, a curva de rotação da Galáxia pode ser interpretada em termos de três componentes: a região esferoidal do bojo, a região do disco galáctico e a região externa contendo a matéria escura, responsável pela parte plana da curva de rotação. Para outras galáxias espirais, curvas semelhantes são também observadas, como mostrado na figura 17.

8.6 Estrutura galáctica e braços espirais

Como mencionado, observações na linha de 21 cm do H permitem mapear a estrutura do disco galáctico em determinadas direções com precisão. Da mesma forma, regiões HII associadas a estrelas quentes, cujas distâncias podem ser bem determinadas, contribuem significativamente para o mapeamento do disco, em especial dos braços espirais. Segundo esses resultados, a Galáxia é uma espiral com três braços, contendo possivelmente uma barra de 2 a 4 kpc , ligando o bojo ao disco, como ilustrado na figura 18.

A existência dos braços espirais como entidades físicas coloca alguns problemas, pois eles deveriam ser destruídos ou enrolados pela rotação galáctica diferencial. Isto claramente não ocorre, pois apenas alguns poucos braços são observados na Via Láctea e em outras galáxias. A escala de tempo dos braços deveria ser no máximo da ordem de 100 milhões de anos, a idade de seus objetos típicos,
muito menor que a idade da Galáxia, da ordem de 13 bilhões de anos. Portanto, ou existe um mecanismo capaz de compensar o efeito da rotação, ou os braços são equivalentes a zonas de compressão de ondas estacionárias, ou aproximadamente estacionárias, em um sistema de referência em rotação.

8.6.1 Ondas de densidade

A teoria das ondas de densidade parece resolver boa parte dos problemas associados aos braços espirais. Originalmente proposta por Bertil Lindblad, foi posteriormente desenvolvida pelo matemático C. C. Lin e o astrônomo chinês Frank Shu, entre outros. Nessa teoria, máximos de densidade, ou cristas da onda, giram em torno do centro galáctico a uma velocidade angular essencialmente constante, diferente da velocidade angular da matéria, que depende da rotação diferencial e varia com a distância ao centro. Nas partes internas e na maior parte da região observada em comprimentos de onda ópticos, a matéria gira mais rapidamente que a onda e o inverso ocorre nas regiões mais externas. A concentração da matéria nos braços galácticos é devida à aproximação periódica de diferentes partes da Galáxia durante seu movimento. A situação é análoga ao movimento de carros em uma rodovia, em que uma das pistas está em reparos em um determinado ponto: um acúmulo de carros ocorre neste ponto, mas o movimento dos carros impede que a região com maior densidade de carros seja composta sempre pelos mesmos veículos. Fotografias tiradas do alto em dias diferentes podem indicar o deslocamento da região de máxima densidade correspondente ao progresso do trabalho na rodovia. Nesse caso, a velocidade dos automóveis, correspondente à velocidade da matéria, será provavelmente diferente da velocidade com que se processam os reparos na rodovia, a velocidade da onda.

8.7 Populações estelares

8.7.1 O conceito de populações estelares

O conceito de populações estelares foi desenvolvido inicialmente pelo astrônomo de alemão naturalizado norte-americano Walter Baade (1893-1960) na década de 1940, a partir de observações
da galáxia de Andrômeda. Nesse objeto, Baade notou que as estrelas mais jovens e azuladas estão concentradas no disco da galáxia e nos braços espirais, enquanto as estrelas mais avermelhadas e velhas se localizam basicamente na região central, ou bojo. Segundo Baade, os objetos se distribuem em duas populações, a população I, composta de objetos mais jovens, azuis e localizados no disco; e a população II, contendo estrelas mais velhas, avermelhadas, localizadas principalmente no bojo e no halo das galáxias.

Esse conceito foi desenvolvido em detalhes e aplicado à Galáxia. Os critérios iniciais de caracterização das populações são a localização e as idades. Atualmente, o conceito de populações estelares está mais sofisticado, e os principais critérios de classificação envolvem idade, composição química, distribuição espacial e características cinemáticas de objetos galácticos. Assim, os objetos de população I são jovens, enriquecidos em elementos pesados (metais), relativamente próximos ao plano galáctico, e em movimento de rotação com baixas dispersões de velocidades. Em contraposição, os objetos de população II são mais velhos, avermelhados, pobres em metais, distantes do plano galáctico, e com órbitas mais excêntricas. Em vez de apenas duas, deve-se considerar mais populações, uma vez que os critérios mencionados têm uma variação aproximadamente continua na Galáxia. Com alguma frequência são mencionadas cinco populações, que incluem a população I extrema (exemplo: regiões HII), I velha (o Sol), disco (nebulosas planetárias de tipo II), II intermediária (estrelas de alta velocidade) e II halo (aglomerados globulares).

8.7.2 Populações estelares e as principais regióes da Galáxia

Vimos que as quatro regiões principais da Galáxia são o disco fino, o disco espesso, o bojo e o halo. Podemos associar as populações estelares da Galáxia a essas regiões, usando alguns dos critérios que definem as populações estelares. Como exemplo, pode-se usar como indicador de metalicidade o índice $[\mathrm{Fe} / \mathrm{H}]$, que mede essencialmente a abundância desses elementos em relação à abundância solar. Quando o índice $[\mathrm{Fe} / \mathrm{H}]=0,0$, a abundância é igual à do $\mathrm{Sol},[\mathrm{Fe} / \mathrm{H}]=-1,0$ significa dez vezes menos elementos pesados que no Sol etc. Temos tipicamente, $[\mathrm{Fe} / \mathrm{H}]>-0,6$ para o disco fino; para o disco espesso, temos $-1<[\mathrm{Fe} / \mathrm{H}]<-0,6$, para o bojo, $-1,5<[\mathrm{Fe} / \mathrm{H}]<$ 1,0 , e para o halo $[\mathrm{Fe} / \mathrm{H}]<-1,0$.

Ao contrário de outras galáxias, como Andrômeda, o bojo da Galáxia não pode ser observado com muitos detalhes no óptico, devido à extinção interestelar. Em imagens profundas pode ser observado que na região central, na direção de Sagittarius, há uma grande concentração de estrelas, muitas vezes maior que na vizinhança solar. Próximo ao centro, a densidade das estrelas alcança cerca de cem mil estrelas por parsec cúbico, de modo que sua separação média é muito menor que na vizinhança solar. Esse fenômeno é também observado em outras galáxias, e está relacionado ao processo de formação da Galáxia. Na região central pode ser observada uma intensa fonte rádio, Sagittarius A. As velocidades de rotação no anel interno desta fonte sugerem que o objeto responsável pela emissão é compacto, com massa da ordem de um milhão de massas solares. Assim como em outras galáxias, acredita-se que a Via Láctea contenha em seu interior um buraco negro supermassivo.

8.7.3 Abundâncias químicas

As diferentes regiões galácticas são compostas basicamente de hidrogênio, com cerca de 10% de hélio por número de átomos. Os elementos leves Li, Be e B são pouco abundantes, e formados essencialmente pelo processo de espalação interestelar (para a nucleossintese primordial, ver as seções 8.9 e 10.8). Os demais, chamados "metais", têm abundâncias cerca de dez mil vezes menor que o H , ou menos que isso, mas com papel importante na evolução química da Galáxia. Portanto, em média, as abundâncias não têm uma variação muito grande, o que levou à ideia de uma abundância "cósmica", embora esse conceito não seja muito rigoroso. Entretanto, é útil considerar abundâncias médias, mas aplicáveis ao Sistema Solar, basicamente medidas na fotosfera solar e nos meteoritos.

As abundâncias médias dos principais elementos químicos no Sistema Solar estão mostradas na figura 19, dadas em função do número atômico Z. Na figura estão assinalados alguns dos principais processos de formação dos elementos químicos e os elementos formados correspondentes, como a queima de $\mathrm{H}, \mathrm{C}, \mathrm{Oe} \mathrm{Si}$ e os chamados processos ser. As abundâncias são dadas na forma e $(\mathrm{X})=$ $\log n(X) / n(H)+12$, por número de átomos. Nesse caso, a abundância do H é igual a 12 , a do hélio é igual a 10,99 , ou seja, cerca de dez por cento da abundância de H , e a do oxigênio é igual a 8,7 , havendo então cerca de dois mil átomos de H para cada átomo de oxigênio.

8.8 Formação de estrelas

8.8.1 Colapso e fragmentação

As nuvens moleculares gigantes, onde objetos jovens e brilhantes estão imersos em nuvens de gás e poeira, são verdadeiros berçários de estrelas. Entretanto, a teoria da formação estelar a partir do colapso e fragmentação dessas nuvens ainda tem muitos pontos obscuros, e a formação estelar é, de fato, a fase menos conhecida da evolução desses astros.

A ideia básica da formação estelar considera que estágios sucessivos de fragmentação e colapso são eficientes para reduzir as massas das nuvens moleculares até as dimensões estelares, ao mesmo tempo aumentando suas densidades em várias ordens de grandeza. Este processo é denominado fragmentação hierárquica, sendo influenciado pelas condições físicas da nuvem, sua massa e dimensões, pela presença de campos magnéticos, rotação etc. O processo continua até a formação de uma estrutura muito densa e opaca, onde a temperatura é suficientemente alta para a ignição termonuclear.

8.8.2 O critério de Jeans

As estrelas se formam a partir de nuvens interestelares, por um processo de instabilidade gravitacional que leva à contração da nuvem, até que as regiões centrais atinjam densidades e temperaturas suficientes para a ignição nuclear. Para uma nuvem homogênea, infinita e em repouso, as instabilidades levam à contração gravitacional se as condições físicas da nuvem forem de forma a que a energia potencial gravitacional de uma partícula a certa distância do centro da nuvem supere a energia cinética da partícula. Nesse caso, podemos mostrar que a massa da nuvem deve satisfazer a relação

$$
\begin{equation*}
M_{J} \simeq 1,4 \times 10^{-10} \frac{T^{3 / 2}}{\rho^{1 / 2} \mu^{3 / 2}} M_{\odot} \tag{10}
\end{equation*}
$$

onde a massa da nuvem está em massas solares, T é a temperatura do gás em graus K, ρ é a densidade
em $\mathrm{g} / \mathrm{cm} 3$, e $\boldsymbol{\mu}$ é o peso molecular médio. A massa M_{J} é chamada a massa de Jeans, Nesse caso, a instabilidade se propaga, havendo a formação de um objeto colapsado em uma escala de tempo da ordem do tempo de queda livre, isto é, o colapso é essencialmente controlado pela gravidade. Em uma nuvem interestelar típica, as massas são da ordem das massas dos aglomerados globulares e das nuvens moleculares gigantes. À medida que o colapso se processa, a densidade aumenta e tanto a massa de Jeans como o tempo de queda livre decrescem. A fragmentação termina quando a massa dos fragmentos equivale à ordem da massa das estrelas.

8.9 Formação e evolução da gáláxia

O conceito de populações estelares é consistente com um colapso inicial rápido na Galáxia, quando foi formada a componente esferoidal (halo) e a condensação central (bojo). As estrelas do halo têm altas dispersões de velocidades e são pobres em metais por um fator da ordem de dez ou superior, em relação ao Sol. Desde o trabalho clássico de Eggen, Lynden-Bell e Sandage em 1962, esse fato tem sido interpretado como evidência de que o halo se formou primeiro, antes que o enriquecimento pelas mortes das estrelas massivas tivesse ocorrido. Como as estrelas formam-se a partir do gás interestelar, pode-se concluir que a formação estelar no halo é atualmente limitada pela escassez de gás e poeira naquela região. Dotada de um movimento de rotação, a nebulosa pregaláctica sofreu um segundo colapso em direção ao plano galáctico, dando origem ao disco, com suas populações mais jovens, e explicando portanto as diferenças de distribuição espacial e metalicidade observadas entre o halo e o disco. Após a formação do disco, perturbações de natureza gravitacional, possivelmente complicadas por forças magnéticas, deram origem à estrutura espiral.

Com os valores atuais para a idade do Universo, a formação da Galáxia deve ter sido iniciada há pouco mais de dez bilhões de anos. Os objetos de população II do halo, como os aglomerados globulares, foram os primeiros a serem formados. É possível que uma geração anterior de estrelas, ditas de população III, tenha sido formada, embora não existam provas inequívocas de sua existência. Em seguida, foram formados objetos do bojo, com idades semelhantes aos do halo. Finalmente, ocorreu a formação do disco, cuja contração ocorreu em uma escala de tempo da ordem do tempo de queda
livre, cerca de 300 milhões de anos. A contração do disco em direção ao bojo foi impedida pelo movimento de rotação associado à nebulosa pregaláctica. A formação de estrelas no disco ocorre até hoje, de modo que podemos distinguir nesta região objetos com idades diferentes.

As diferenças na composição química das populações estelares da Galáxia ajustam-se também a esse esquema. No modelo padrão, foram inicialmente formados os elementos leves $\mathrm{D},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$, $e^{7} \mathrm{Li}$. Os elementos pesados, como C, N, O etc., tiveram origem no interior das estrelas, isto é, só começaram a ser sintetizados após a formação da primeira geração de estrelas. Assim, os objetos mais velhos do halo (população II) devem ter baixo conteúdo de elementos pesados, o que é confirmado pelas observações. À medida que a evolução se processa, o gás enriquecido é devolvido ao meio interestelar pelas supernovas, nebulosas planetárias e outros processos de perda de massa, de modo que, em média, os objetos mais jovens apresentam maior abundância de elementos pesados.

O cenário "monolítico" para a formação da Galáxia é muito atraente, e consegue explicar uma série de observações, mas sofreu muitas modificações nos últimos 40 anos. Em particular, um aspecto importante da formação da Galáxia, que distingue os modelos atuais daqueles modelos monolíticos iniciais, refere-se aos processos de infall, ou queda de matéria no disco e halo galácticos. A Via Láctea integra um conjunto de galáxias, o Grupo Local, e parte do material dessas galáxias pode interagir com o gás da Galáxia, afetando o processo de formação estelar.

8.9.1 Evolução galáctica e evolução química

A evolução da Galáxia compreende a evolução dinâmica e a evolução química. Esses aspectos estão correlacionados e ocorrem simultaneamente, embora sejam geralmente estudados de maneira independente. Em particular, a evolução química da Galáxia passa pelo estudo da composição química das estrelas, gás etc., em termos da produção dos elementos pelas estrelas e do processo de ejeção e mistura dos elementos no meio interestelar. Seus objetivos incluem o estudo das distribuições de abundâncias dos elementos, variações de metalicidade com a idade e posição, gradientes e variações nas abundâncias relativas dos elementos pesados etc. Um esquema da evolução química da Galáxia é mostrado na figura 20. Note-se a presença inicial do Big Bang, quando ocorreu a nucleossíntese primordial, e a posterior formação da Galáxia, em particular do halo e do disco, em épocas diferentes.

Do ponto de vista da evolução química da Galáxia, estamos particularmente interessados na circulação de matéria entre o gás e as estrelas. A partir do meio interestelar são formadas as estrelas, com a ação de eventuais fluxos radiais e presença de queda de material, segundo uma certa função de massa inicial (IMF) e uma taxa de formação estelar (SFR). Essas estrelas evoluem, produzem novos elementos, pelo processo de nucleossíntese estelar, sofrem perda de massa em várias etapas de sua evolução, e finalmente devolvem o material ao meio interestelar, a menos dos restos inertes. Nesse processo, o gás tem sua composição alterada ao longo da vida da Galáxia. Em particular, o próprio material de que somos feitos, como os átomos de carbono que constituem o nosso corpo, foi um dia sintetizado no interior de estrelas que morreram há alguns bilhões de anos.

Galáxias

Gastão B. Lima Neto
9. 1 Introdução: o que sâo galáxias 9.2 Descoberta das galáxias e da Via Láctea
9.3 Forma das galáxias
9.3.1 Galáxias Elípticas 9.3.2 Galáxias Espirais 9.4 Curvas de rotação
9.5 Distribuição em grande escala 9.5.1 Distribuição de galáxias: Grupo Local 9.5.2 Grupos Compactos
9.5.3 Aglomerados de Galáxias 9.5.4 Superaglomerados
9.5.5 Estrutura em grande escala
9.6 Galáxias peculiares: colisóes galácticas 9.6.1 Galáxias ativas, radiogaláxias e quasares 9.7 Formaçáo de galáxias 9.8 Lentes gravitacionais

[^0]: 8.4.7 Nebulosas Ionizadas interestelares

