FORMULÁRIO DE FÍSICA

I-MECÂNICA CINEMÁTICA

"Repouso ou movimento? R: Depende do referencial". Velocidade média: $V = \Delta s / \Delta t$ U(V)=m/sAceleração média: $\mathbf{a} = \Delta \mathbf{v} / \Delta \mathbf{t}$ U(a)=m/s²

MOVIMENTO UNIFORME. (M.U.): $S = S_0 + v t$ MOVIMENTO UNIFORMEMENTE VARIADO

 $S = S_0 + V_0 t + a t^2 / 2$

 $V^2 = v_0^2 + 2 a \Delta s$ Eq. Torricelli

MOVIMENTO CIRCULAR

Aceleração centrípeta: $a_{cp} = V^2 / R$

Período(T)- intervalo de tempo decorrido entre duas repetições seguidas.

Freqüência(f)- número de repetições na unidade de tempo. T = 1/f $U(T)= s^{-1}$ U(f)=hertz (Hz)

Velocidade angular: $\omega = 2 \pi / T = 2 \pi f$

Outras: $s = \theta.R$ $V = \omega R$

VELOCIDADE VETORIAI: tangente à trajetória no ponto e o mesmo sentido do movimento.

ACELERAÇÃO TANGENCIAL (at) indica a variação Termometria medida de temperatura

ACELERAÇÃO CENTRÍPETA (\mathbf{a}_{c}) indica variação da direção do vetor velocidade.

MÓDULO:

VETOR ACELERAÇÃO RESULTANTE (a) ALGEBRICAMENTE: $a^2 = a_t^2 + a_c^2$

DINÂMICA

Força peso: p = m.gForça elástica: Fel = - k .X Força de atrito: Fat = μ .N

Lei da inércia (1a Lei da Mecânica). Se a força Fórmula Fundamental da Calorimetria resultante que atua em um dado corpo é nula ele está em repouso ou movimento retilíneo uniforme. Princípio das Trocas . $Q_1 + Q_2 + ... = O$

Lei Fundamental da dinâmica (2a Lei). aceleração adquirida por um corpo é diretamente proporcional a força resultante e inversamente proporcional a sua massa.

$F_R = m a$.

Lei da Acão e Reação(3a Lei). A toda ação 1 MOL = 6,02 X 10²³ (Nº de Avogrado) corresponde uma reação de mesmo módulo e CNTP T = 273 K e p = 1 atm intensidade, porém de sentido contrário. F_{ab} = - F_{ba} Lei geral dos gases perfeitos

GRAVITAÇÃO UNIVERSAL

$F = G M m / d^2$

1ª LEI DAS ÓRBITAS. Os planetas descrevem trajetórias elípticas, onde o Sol ocupa um dos focos da

2^a - LEI DAS ÁREAS - As áreas varridas pelo raio vetor de um planeta são proporcionais ao tempo gasto para varrê-las.

3ª - LEI DOS PERÍODOS - Os cubos dos raios médios dos planetas em torno do Sol são proporcionais aos 1.Propagação retilínea. 2.Independência quadrados dos períodos de revoluções.

$R^3 = k T^2$

TRABALHO DE UMA FORÇA.

 $W = F.\Delta S.\cos \theta$; U(W) = Joule (J)Trabalho da força peso: W_p= m.g.h

Trabalho da força elástica: W_{el} =k.x²/2

Potência; $P = W/\Delta t$ (watt(W))

Rendimento = n = P.útil / P.total

ENERGIA

Energia Cinética: $E_c = m.v^2/2$ Energia Potencial: E_{pg}=m.g.h

 $E_{\text{P.elástica}} = Kx^2 / 2$ TEC $\Sigma W = \Delta E_C$

Energia Mecânica \Rightarrow $E_M = E_C + E_P$

CEM: $\mathbf{E}_{MA} = \mathbf{E}_{MB}$ se $\mathbf{F}_{DISP} = \mathbf{O}$

QUANTIDADE DE MOVIMENTO

 $\mathbf{Q} = \mathbf{m} \cdot \mathbf{v}$

IMPULSO: I = F. Δt e $I = \Delta Q$ $\mathbf{Q}_{A} = \mathbf{Q}_{B}$ se $\Sigma F_{ext} = \mathbf{Q}$ **ESTÁTICA**

. Estática da Partícula .

 $\Sigma \mathbf{F}_r = \mathbf{O}$ ou $\Sigma \mathbf{F} = \mathbf{O}$ e $\Sigma \mathbf{F} = \mathbf{O}$

. Momento ou Torque (M)

M = F. d onde horário (-) anti-horário (+)

. Estática dos Sólidos

 $\Sigma F_r = O$ $\Sigma M_r = O$

Δ FLUIDOESTÁTICA

Massa Específica: $\rho = m / v$

Pressão: p = F/A

Princípio Fundamental da Fluidoestática

 $P_B - P_A = \rho.g.h$

 $E = \rho_{Lig} \cdot V_{desl} \cdot g$ Empuxo:

II-TERMOFÍSICA

Temperatura medida do grau de agitação molecular dos sistemas

. Equilíbrio Térmico Temperaturas iguais

. Escalas de Temperatura

 $^{\circ}$ C / 5 = $^{\circ}$ F - 32 / 9 = K - 273 / 5

Celsius (°C), Fahrenheit (°F) e Kelvin (K)

CALORIMETRIA

1 cal = 4,18 Joules

Capacidade Térmica = $C = \Delta Q / \Delta T = m . c$

$$Q = m \cdot c \cdot \Delta t$$

A Calor latente de mudança de fase (L)

 $Q = m \cdot L$

GASES PERFEITOS

Equação do Estado: $P.V = n \cdot R \cdot T$

Obs. T só em Kelvin

 $P_1V_1/T_1 = P_2V_2/T_2$

Trabalho: Transformação Isobárica $W = p \cdot \Delta V$

1º LEI DA TERMODINÂMICA

 $\Delta U = Q - W$

ΔU = variação da energia interna

III- Ó PTICA GEOMÉTRICA PRINCÍPIOS DE ÓPTICA

3. Reversibilidade

Luz branca – mistura de todas as cores

Preto - ausência de cor

Reflexão: $\angle i = \angle r$

ângulo de incidência (i) = ângulo de reflexão (r).

Espelho Plano.

Translação do espelho: D = 2dVelocidade da imagem: $V_i = 2 \cdot V_e$

Espelho Esférico

Equação do aumento transversal

$$A = i / O = -p^p$$

Eq. De Gauss (pontos conjugados) Onde p é sempre positivo, f é positivo p/ espelho côncavo, e p' é positivo para uma imagem real. 1/f = 1/p + 1/p'

REFRAÇÃO

Índice de refração absoluto \Rightarrow n = c / v Lei de Snell-Descartes: Sen i . $n_i = \text{sen r . } n_r$ LENTES ESFÉRICAS. Referencial de GAUSS: "P" é sempre positiva,. "P" será positiva se a imagem for real,."F" positiva se a lente for convergente Eq. De Gauss: 1/f = 1/p + 1/p'

IV-ONDAS

MHS (Movimento Harmônico Simples) Período(T) é o tempo de duração de um de um ciclo num fenômeno periódico. Freqüência (f) é o número de ciclos completos na unidade de tempo. Oscilador Harmônico. T = $2\pi \sqrt{(m/k)}$ Pêndulo simples. $T = 2\pi \sqrt{(L/g)}$ comprimento de onda (Lλ) Velocidade => $v = \lambda \cdot f$ Equação da onda: $Y(x,t) = A \operatorname{sen} (\omega t - \theta_0 \omega)$

V-ELETRICIDADE ELETROSTÁTICA

Carga elementar = $1,6 \cdot 10^{-19}$ Coulomb Quantidade de carga (Q) = Q = n. e Lei de Coulomb. $F_{AB} = K_0 (q_A \cdot q_B / d^2)$ Campo elétrico (\mathbf{E}). $\mathbf{F} = \mathbf{q} \cdot \mathbf{E}$ Campo elétrico uniforme. (CEU): E = d U Potencial elétrico (v): $V_A = W^A / q$ U(V) = Volt(V)Potencial num ponto: $V_A = K (Q / d_A)$

ELETRODINÂMICA

Energia Potencial Elétrica: $E_{PA} = q \cdot V_A$

Intensidade média de corrente elétrica: $i_m = \Delta q / \Delta t$

Lei de Ohm. V = R . i

Segunda lei de Ohm. $R = \rho (L/A)$

Potencia Elétrica: $P = r i^2 = i \cdot V$

Energia Elétrica $E = W = P \cdot \Delta t$

Lei de Joule $E = R \cdot i^2 \cdot \Delta t$

Resistência Equivalente.

associação série: $R_{eq} = R_1 + R_2 + ...$

associação-paralelo: $1/R_e = 1/R_1 + 1/R_2 + ...$

ou Re = R1.R2 / (R1+R2)

Voltímetro ideal \Rightarrow $r_{int} = \infty$ ligado em paralelo Amperímetro ideal => $r_{int} = 0$ ligado em série Força eletromotriz (F.E.M.): E = Wn/q

Equação do gerador

 $V_B - V_A = V_{BA} = E - r i$

Rendimento de um gerador (n)

 $n = p_U / P_T = V_{BA} / E = 1 - (r \cdot i / E)$

ELETROMAGNETISMO

Campo magnético produzido p/ um condutor retilíneo. B = $(\mu_0 \cdot i / 2\pi d)$ Campo magnético produzido p/ uma espira circular. $B = (\mu_0 \cdot i / 2 R)$

Força Magnética sobre uma carga móvel

 $F_m = q \cdot v \cdot B \operatorname{sen} \theta$

Fluxo Magnético: $\emptyset = B \cdot S \cdot \cos \alpha \hat{a}$

Lei de Faraday – Neumann: $\varepsilon = -\Delta \emptyset / \Delta t$

www.abacoaulas.com